Functional biomimetic analogs help remineralize apatite-depleted demineralized resin-infiltrated dentin via a bottom-up approach.
نویسندگان
چکیده
Natural biominerals are formed through metastable amorphous precursor phases via a bottom-up, nanoparticle-mediated mineralization mechanism. Using an acid-etched human dentin model to create a layer of completely demineralized collagen matrix, a bio-inspired mineralization scheme has been developed based on the use of dual biomimetic analogs. These analogs help to sequester fluidic amorphous calcium phosphate nanoprecursors and function as templates for guiding homogeneous apatite nucleation within the collagen fibrils. By adopting this scheme for remineralizing adhesive resin-bonded, completely demineralized dentin, we have been able to redeposit intrafibrillar and extrafibrillar apatites in completely demineralized collagen matrices that are imperfectly infiltrated by resins. This study utilizes a spectrum of completely and partially demineralized dentin collagen matrices to further validate the necessity for using a biomimetic analog-containing medium for remineralizing resin-infiltrated partially demineralized collagen matrices in which remnant seed crystallites are present. In control specimens in which biomimetic analogs are absent from the remineralization medium, remineralization could only be seen in partially demineralized collagen matrices, probably by epitaxial growth via a top-down crystallization approach. Conversely, in the presence of biomimetic analogs in the remineralization medium, intrafibrillar remineralization of completely demineralized collagen matrices via a bottom-up crystallization mechanism can additionally be identified. The latter is characterized by the transition of intrafibrillar minerals from an inchoate state of continuously braided microfibrillar electron-dense amorphous strands to discrete nanocrystals, and ultimately into larger crystalline platelets within the collagen fibrils. Biomimetic remineralization via dual biomimetic analogs has the potential to be translated into a functional delivery system for salvaging failing resin-dentin bonds.
منابع مشابه
Title Failure of a glass ionomer to remineralize apatite - depleteddentin
Remineralization of demineralized dentin lesions adjacent to glass-ionomer cements (GICs) has been reported in the literature. This study tested the hypothesis that a strontium-based GIC can remineralize completely demineralized dentin by nucleation of new apatite crystallites within an apatite-free dentin matrix. Human dentin specimens were acid-etched, bonded with Fuji IXGP, and immersed in a...
متن کاملChanges in stiffness of resin-infiltrated demineralized dentin after remineralization by a bottom-up biomimetic approach.
This study examined changes in elastic modulus, mineral density and ultrastructure of resin-infiltrated dentin after biomimetic remineralization. Sixty demineralized dentin beams were infiltrated with Clearfil Tri-S Bond, One-Step or Prime&Bond NT. They were immersed in simulated body fluid (SBF) for 1 week to maximize water sorption before determining the baseline elastic moduli. For each adhe...
متن کاملBiomimetic Remineralization of Demineralized Dentine Using Scaffold of CMC/ACP Nanocomplexes in an In Vitro Tooth Model of Deep Caries
Currently, it is still a tough task for dentists to remineralize dentine in deep caries. The aim of this study was to remineralize demineralized dentine in a tooth model of deep caries using nanocomplexes of carboxymethyl chitosan/amorphous calcium phosphate (CMC/ACP) based on mimicking the stabilizing effect of dentine matrix protein 1 (DMP1) on ACP in the biomineralization of dentine. The exp...
متن کاملEffect of dentinal tubule orientation on the modulus of elasticity of resin-infiltrated demineralized dentin.
The effect of tubule orientation of dentin on the elastic modulus of resin-infiltrated dentin was evaluated. Rectangular cylindricalshaped dentin specimens with their long axis parallel to and perpendicular to dentinal tubules were prepared from extracted premolars. Twenty-five mineralized specimens of each orientation were evaluated. The remaining specimens were then demineralized. The deminer...
متن کاملChanges in elastic modulus of adhesive and adhesive-infiltrated dentin during storage in water.
The purpose of this study was to determine the elastic modulus of components at the resin-dentin interface with the use of an ultrasound device. Dentin slabs were obtained from freshly extracted bovine incisors shaped into a rectangular form. After demineralization, the dentin specimens were immersed in adhesives and polymerized. Adhesives were also polymerized and trimmed into the same shape a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta biomaterialia
دوره 6 7 شماره
صفحات -
تاریخ انتشار 2010